Measure Theory with Ergodic Horizons Lecture 16

Integration.
Given a measurable space
$$(X, B)$$
, we denote
 $L = L(X, B) := he sol of all B-macanable red-valued functions $X \rightarrow \overline{R} := [-\infty, +\infty]$
 $U = L^{*}(X, B) := hf \in L(X, B) : f \ge 0$.
Note that $L(X, B)$ is a vector space dowd under products and timits, while $U^{*}(X, B)$ is also
dosed under non-negative linear combinations, product, and limits (in particular, under inhome suns).
Def. An integral on $U^{*}(X, B)$ is a a ably additive non-negative linear functional $I : U^{*}(X, B) \rightarrow \overline{R}$, i.e.
(i) $I(ds+pg) = d \cdot I(f) + p I(g)$ for all $f, g \in U$ and all $d, p \in \overline{R}$ such that $df \in Pg \in U$.
(ii) $I(ds+pg) = d \cdot I(f) + p I(g)$ for all $f, g \in U$ and all $d, p \in \overline{R}$ such that $df \in Pg \in U$.
(iii) $I(T) \ge 0$ for all $f \in U^{*}$, so $f \le g \Longrightarrow I(f) \le I(g)$.
(iii) $I(\sum_{n \in N} + \sum_{n \in N} I(f_{n})$ for all $f_{n} \in U$.
Proof. $\mu_{1}(g) = I(0) = 0$ by directing (i), and the official dirivity is by (ii).
We would hile to show the converse of twis:$

Theorem. For every measure
$$\mu$$
 on (X, ∞) have is a unique integral $I\mu$, celled the integral over μ , such that $\mu_{I\mu} = \mu$.
Remark. Every integral I on $U(X, \infty)$ uniquely determines a linear traditional on a response of $U(X, \infty)$.
Read the levery is $U(X, \infty)$ decomposes $f = f_{+} - f_{-}$ by taking $f_{-}(X) = \int f(x)$ if $F(x) \geq 0$ and $f(x) \geq 0$.
Read to define $I(f) := I(f_{+}) - I(f_{-})$ and this is well-defined to define $I(f_{+}) := I(f_{+}) - I(f_{-})$ and this is well-defined to the view $f(X, \infty)$ for which $I(f_{+}) < \infty$ and $I(f_{-}) < \infty$.
Other using the $U(X, \infty)$ for which $I(f_{+}) < 0$ and $I(f_{-}) < \infty$.
Other using the level $f(X, \infty)$ for which $I(f_{+}) < I(f_{-}) = I(f_{+}) - I(f_{-})$.
Other $f(X, \infty)$ for which $I(f_{+}) < 0$ and $I(f_{-}) < \infty$.
Other $f(X, \infty)$ for which $I(f_{+}) < 0$ and $I(f_{-}) < \infty$.
Other $f(X, \infty)$ for which $I(f_{+}) < I(f_{-}) = I(f_{+}) - I(f_{-})$.
Other $f(X, \infty)$ for which $I(f_{+}) < I(f_{-}) < I(f_{-}) = I(f_{+}) - I(f_{-})$.
Due to $f(X, Men_{V})$.
We will denote this integral by $\int f(F_{-}) = I(f_{+}) - I(f_{-})$.
Difference $f(X, \infty) = \int f(X, \infty) = I(f_{+}) - I(f_{-})$.
Difference $f(X, \infty) = \int f(X, \infty) = I(f_{+}) - I(f_{-})$.
Difference $f(X, \infty) = \int f(X, \infty) = I(f_{+}) - I(f_{-})$.
Difference $f(X, \infty) = \int f(X, \infty) = I(f_{+}) - I(f_{-})$.
Difference $f(X, \infty) = \int f(X, \infty) = I(f_{+}) - I(f_{+}) = I(f_{+})$.
Difference $f(X, \infty) = \int f(X, \infty) = I(f_{+}) - I(f_{+}) = I(f_{+})$.
Difference $f(X, \infty) = I(f_{+}) - I(f_{+}) = I(f_{+})$.
Difference $f(X, \infty) = I(f_{+}) - I(f_{+}) = I(f_{+})$.
Difference $f(X, \infty) = I(f_{+}) - I(f_{+}) = I(f_{+})$.
Difference $f(X, \infty) = I(f_{+}) - I(f_{+}) = I(f_{+})$.
Difference $f(X, \infty) = I(f_{+}) = I(f_{+}) = I(f_{+})$.
Difference $f(X, \infty) = I(f_{+}) = I(f_{+}) = I(f_{+})$.
Difference $f(X, \infty) = I(f_{+}) = I(f_{+}) = I(f_{+}) = I(f_{+})$.
Difference $f(X, \infty) = I(f_{+}) = I(f_{+}) = I(f_{+})$.
Difference $f(X, \infty) = I(f_{+}) = I(f_{+}) = I(f_{+}) = I(f_{+})$.
Difference $f(X, \infty) = I(f_{+}) = I(f_{+}) = I(f_{+})$

For a simple function
$$f: X \rightarrow \mathbb{R}$$
, let $f(x) = \{a_0, a_1, \dots, a_n\}$. Then

$$f = \sum_{i=0}^{n} a_i \cdot \mathbb{1}_{f^{-1}(a_i)}$$
is called the standard representation of f .

Proof. (b) follows from (a) by getting increasing sequences
$$(f_u)$$
 and (f_u) of non-negative simple
furthions approximating f_- and f_+ as in (a), then verifying that $f_u := f_u^+ - f_u^-$ is as
desired.
(a) To define f_u , we "autoff" the range of $f_ g_-^+(g_-^*, g_-, g_-) = B_s$
at 2" and split the rest $[0, 2^n]$ into $g_-^* = g_-^- =$

equal pieces of size
$$2^{-n}$$
, i.e. into 2^{2n} pieces. Let $A_{k} := f^{-1}((2^{-n} \cdot k, 2^{-k} \cdot (k+1)))$ and ut
 $f_{n} := \sum_{k=0}^{2^{n-1}} 2^{-k} \cdot 1_{A_{k}} = \sum_{k=1}^{2^{n-1}} 2^{-k} \cdot 1_{B_{k}}$ there $B_{k} := f^{-1}((2^{-n} \cdot k, \infty))$, so $B_{1} \ge B_{2} \ge B_{3} \ge \dots$
 N the first $A_{k} = B_{k+1} \setminus B_{k}$ for all $k < 2^{2n}$. Note that on $X_{1n} := f^{-1}((0, 2^{n}))$,
we have $\|f_{n}\|_{X_{n}} = f_{1} \times \|f_{k}\|_{U} \le 2^{-k}$. Since $X_{n} \nearrow X_{n}$ i.e. $X_{n} \le X_{n} \le X_{n$